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Abstract. 13 

The permafrost region contains a significant portion of the world’s soil organic carbon, and its thawing, driven by accelerated 14 

Arctic warming, could lead to the substantial release of greenhouse gases, potentially disrupting the global climate system. 15 

Accurate predictions of carbon cycling in permafrost ecosystems hinge on the robust calibration of model parameters. 16 

However, manually calibrating numerous parameters in complex process-based models is labor-intensive and further 17 

complicated by equifinality - the presence of multiple parameter sets that can equally fit the observed data. Incorrect calibration 18 

can lead to unrealistic ecological predictions. In this study, we employed the Model Analysis and Decision Support (MADS) 19 

software package to automate and enhance the accuracy of parameter calibration for carbon dynamics within the coupled 20 

Dynamic Vegetation Model, Dynamic Organic Soil Model, and Terrestrial Ecosystem Model (DVM-DOS-TEM), a process-21 

based ecosystem model designed for high-latitude regions. The calibration process involved adjusting rate-limiting parameters 22 

to accurately replicate observed carbon and nitrogen fluxes and stocks in both soil and vegetation. Gross primary production, 23 

net primary production, vegetation carbon, vegetation nitrogen, and soil carbon and nitrogen pools served as synthetic 24 

observations for a black spruce boreal forest ecosystem. To validate the efficiency of this new calibration method, we utilized 25 

model-generated synthetic observations. This study demonstrates the calibration workflow, offers an in-depth analysis of the 26 

relationships between parameters and synthetic observations, and evaluates the accuracy of the calibrated parameter values. 27 
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1 Introduction 28 

The permafrost region contains 1,440-1,600 petagrams of organic carbon in its soils, representing nearly half of the world's 29 

soil organic carbon pool (Hugelius et al., 2014; Schuur et al., 2022). Accelerated warming in the Arctic leads to permafrost 30 

thaw, resulting in the decomposition and potential release of a substantial portion of this stored carbon as greenhouse gases, 31 

significantly impacting the global climate system (Natali et al., 2021; Schuur et al., 2022; Treharne et al., 2022). The permafrost 32 

carbon-climate feedback remains one of the largest sources of model uncertainty for future climate predictions, as critical 33 

ecological and biogeochemical processes are poorly represented and constrained in ecosystem models, if included at all 34 

(McGuire et al., 2016, 2018; Schädel et al., 2024). To predict future permafrost evolution, models rely on various parameters 35 

that contribute to a wide uncertainty range in predictions of permafrost warming (Andresen et al., 2020; Harp et al., 2016; 36 

Schädel et al., 2024). Thus, the development of parameter calibration methods is an essential step toward improving prediction 37 

accuracy and deepening our understanding of permafrost dynamics and future permafrost carbon-climate feedbacks. 38 

 39 

Calibration involves estimating and adjusting model parameters and constants to enhance the agreement between model 40 

outputs and observed data, with the model serving as a mathematical representation of ecological and physical processes 41 

(Rykiel, 1996). These parameters are often rate or transport constants that are onerous or impractical to empirically estimate, 42 

though model outputs can be highly sensitive to them. Since many model representations are grounded in physics, generalized 43 

physical laws are often used to describe ecological and cryohydrological processes. Typically, model outputs are validated 44 

against data from laboratory experiments, idealized mathematical models, or site-specific observations, also referred to as 45 

target data. During this validation, model parameters are adjusted so that model outputs match the target data. The validated 46 

model is then applied to broader geographic locations and/or different time periods, assuming that the validation data represent 47 

the environment or ecosystem for which the parameters were calibrated. 48 

 49 

Parameter calibration for complex process-based models is often constrained by the significant labor required and the limited 50 

availability of sites with the necessary observations, especially in permafrost regions. Despite these challenges, process-based 51 

models remain essential because they encapsulate our current understanding of ecosystem functions and structures, serving as 52 

powerful tools for extrapolation. The assumption of representativeness is intrinsic to these models, as they are designed to 53 

simulate processes that reflect our best understanding of ecosystem dynamics, allowing for their application beyond the 54 

specific sites where they have been initially parameterized. The approach of extrapolating model parameterization for 55 

ecosystems of the same type, across wider regions is standard and widely used within ecosystem modeling communities 56 

(McGuire et al., 2018; Matthes et al., 2024). Additionally, the role of ecosystem diversity on the spatio-temporal patterns of 57 

ecosystem carbon dynamics in the permafrost region has been characterized by numerous empirical studies (Euskirchen et al., 58 

2014; Melvin et al., 2015) and evaluated by modeling investigations (Lara et al., 2016). Therefore, a critical step in improving 59 

model accuracy involves calibrating the model against data for a representative diversity of ecosystem types in the Arctic 60 
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where observations are available. To prepare an ecosystem model for this extensive calibration task, it is essential to develop 61 

robust calibration tools and methods that can automate the process of efficiently optimizing model parameters. 62 

Another well-known and significant issue in optimizing model parameters through calibration, also referred to as parameter 63 

estimation or optimization, is the existence of equifinality (Jafarov et al., 2020; Nicolsky et al., 2007; Tran et al., 2017). 64 

Parameterization equifinality occurs when different sets of parameter values result in the same or similar model predictions, 65 

given that the model, forcing data, and observations used in calibration are the same (Beven and Freer, 2001). Model 66 

equifinality can subsequently lead to different outcomes in model projections. Multiple random initial guesses are used to 67 

address this challenge. If the majority of calibration tests with different initial guesses yield a good fit with observations and 68 

result in optimal parameter sets that are similar or closely aligned, it increases confidence that the recovered parameter set is 69 

indeed optimal. This approach mitigates the risk of converging on a local minimum and ensures a more robust and reliable 70 

parameter estimation process (Hansen, 1998). 71 

Various methods have been employed to improve the calibration of model parameters across multiple scientific disciplines, 72 

utilizing sophisticated techniques and integrating diverse data sources such as remote sensing and field measurements, while 73 

accounting for model and data uncertainty (Dietze et al., 2018; Efstratiadis and Koutsoyiannis, 2010; Luo et al., 2016). 74 

Optimization-based inverse methods have been successfully used to calibrate parameters in physical models, including snow 75 

properties and subsurface thermo-hydrological properties (Jafarov et al., 2014, 2020), as well as soil properties for permafrost 76 

modeling (Nicolsky et al., 2007, 2009). However, inverse modeling can become computationally intractable when applied to 77 

complex process-based models (Linde et al., 2015). 78 

Markov Chain Monte Carlo (MCMC) and data assimilation (DA) techniques have been employed to optimize model 79 

parameters by synchronizing model outputs with observed data, thereby enhancing model prediction accuracy (Brunetti et al., 80 

2023; Fer et al., 2018; Xu et al., 2017). These methods often leverage Bayesian inference to address structural uncertainties 81 

within models. Nonetheless, the computational demand required for conducting MCMC simulations can outweigh the gains 82 

in model accuracy, particularly when dealing with complex process-based models with slow turnover rates that necessitate 83 

long simulations to reach equilibrium. 84 

In recent years, DA techniques have been applied to optimize both model state variables (Fox et al., 2018; Ling et al., 2019) 85 

and parameters (Bloom et al., 2016; Peylin et al., 2016; Scholze et al., 2016; Schürmann et al., 2016). However, DA also 86 

encounters challenges related to unbalanced outputs and the need for extended simulations to achieve equilibrium. Persistent 87 

issues include the incorrect characterization of the error covariance matrix, which can lead to inaccurate posterior parameter 88 

values due to unaccounted model structural errors and observation biases (MacBean et al., 2016; Wutzler and Carvalhais, 89 

2014). 90 
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Various surrogate-based optimization approaches have been proposed to alleviate the computational burden associated with 91 

parameter calibration (Koziel et al., 2011; Queipo et al., 2005). Surrogate models, also known as reduced-order models, 92 

simplify certain physical processes to approximate the underlying dynamics of the real model while being computationally 93 

less demanding (Forrester et al., 2006). By simplifying specific aspects of the model, surrogate models retain essential 94 

characteristics of the original system, allowing for faster and more efficient calibration without significantly compromising 95 

accuracy (Razavi et al., 2012; Regis and Shoemaker, 2007). However, simplifying complex models presents significant 96 

challenges. It is often unclear which assumptions can be safely made and which should be avoided, potentially leading to a 97 

loss of model accuracy. Surrogate models must carefully balance the trade-off between simplification and the retention of 98 

critical model characteristics to ensure reliable performance. This complexity necessitates rigorous validation to confirm that 99 

the surrogate model provides an adequate approximation of the real system without introducing significant errors. 100 

In recent years, machine learning-based emulators, often referred to as "models of models," have emerged as a promising 101 

approach to reduce the computational burden associated with parameter calibration in complex ecosystem models (Castelletti 102 

et al., 2012; Fer et al., 2018; Reichstein et al., 2019). These emulators aim to approximate the outputs of physical and process-103 

based models by learning the relationships between model inputs and outputs through multi-dimensional matrices, significantly 104 

enhancing computational efficiency. Unlike traditional surrogate models, which simplify the physical processes within a 105 

model, emulators strive to mimic the full complexity of the original model while requiring less computational power. For 106 

instance, Dagon et al., (2020) utilized artificial neural networks to emulate the Community Land Model version 5 outputs, 107 

focusing on biophysical parameter estimation and global calibration. By integrating machine learning techniques, they were 108 

able to explore parameter spaces more efficiently and achieve better alignment with observed data. This method demonstrates 109 

the potential of machine learning emulators in improving the accuracy and efficiency of parameter calibration in ecosystem 110 

models, particularly when faced with the challenge of high computational demands. 111 

To facilitate the automation of the calibration process while minimizing computational demand and avoiding the 112 

oversimplification of ecological processes and feedbacks, we employed a non-linear least squares approach for our calibration. 113 

We utilized the Model Analysis and Decision Support (MADS) software package (Barajas‐Solano et al., 2015; O’Malley and 114 

Vesselinov, 2015) for parameter calibration of a terrestrial ecosystem permafrost-enabled model. MADS has been actively 115 

developed since 2010, and its conversion to the Julia programming language has provided automatic differentiation capabilities 116 

suitable for calibration problems, improving computational efficiency (Vesselinov V.V., 2022). 117 

In this study, we developed an automated parameter calibration method for a process-based terrestrial ecosystem model 118 

developed for high-latitude regions and characterized by a high level of complexity. To demonstrate its efficacy, we utilized 119 

synthetic data and evaluated the capacity of the calibration method to recover the data after perturbing initial guesses (a given 120 

set of parameters) using random sampling. The model was run using known parameter values, and the resulting outputs were 121 

treated as observations. The primary objective was to illustrate that the parameter calibration method could recover the 122 
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synthetic parameter set successfully. The secondary objective was to optimize and reduce the labor and time associated with 123 

manual parameter calibration. We developed and tested our calibration method for the coupled dynamic vegetation model, 124 

dynamic organic soil, and terrestrial ecosystem model (DVM-DOS-TEM) and tested our approach using synthetic observations 125 

at a black spruce forest site, a dominant community type in Interior Alaska. 126 

2 Methods  127 

2.1 Synthetic data for Black Spruce Forest site 128 

The two most common forest types in interior Alaska are evergreen stands of black spruce and mixed spruce-deciduous 129 

broadleaf forests. Approximately 39% of Interior Alaska is covered by evergreen forest stands and 24% by deciduous forest 130 

stands (Calef et al., 2005; Jean et al., 2020). In our study, we developed model calibration for a black spruce (Picea mariana) 131 

forest community type (CMT), using observations collected in a site located within the Tanana Valley State Forest, just outside 132 

Fairbanks, Alaska (64°53′N, 148°23′W). Carbon (C) and nitrogen (N) cycling and environmental monitoring in this forest 133 

stand were originally observed by Melvin et al., (2015). The Murphy Dome fire 1958, which covered 8,930 hectares, burned 134 

this area and resulted in complete stand mortality.  135 

 136 

We used Gross Primary Productivity without N limitation (GPP*), Net Primary Productivity (NPP), Vegetation C, and 137 

Vegetation N stocks by compartments (i.e. roots, stems, and leaves) as synthetic observations shown in Table 1. Synthetic 138 

observations are model-generated data that simulate actual measurements using known parameter values, referred to as 139 

synthetic target values. To generate these target values, we used existing parameters and the setup described in Section 2.3. 140 

The target values shown in Table 1 represent the state of the ecosystem where vegetation and below-ground C stocks are in a 141 

steady state. Table 2 includes the below-ground target values.  The model was previously manually calibrated using 142 

observations from the site. The actual observations were collected and prepared from the measured data at the site and from 143 

existing literature and published datasets. Data pre-processing was required before the time series data could be analyzed. Pre-144 

processing was performed to identify and resolve missing data, inconsistencies, and potential outliers. In addition, site 145 

observations were aggregated to a monthly resolution to match the temporal resolution of the model outputs, and unit 146 

transformations were applied when needed to standardize the units of each variable. Target values for the site were compiled 147 

from various data literature sources containing information on C and N stocks, plant biomass, soil horizon depths, and 148 

productivity. However, following the initial calibration, the model outputs were similar but did not exactly match the target 149 

observations. As stated above, we choose synthetic targets because we know a set of parameters used to produce them and can 150 

compare how closely we can recover known parameter values. Therefore, we used the actual model output as our synthetic 151 

target values. 152 

Table 1: Synthetic vegetation target values for the black spruce forest site used in the parameter calibration process 153 
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Above-ground Target Names Notation Units Plant Functional Types 

Evergreen 

Tree 

Deciduous 

Shrub 

Deciduous 

Tree 

Moss 

Gross Primary Productivity 

without nitrogen limitation 

𝐺𝑃𝑃∗  

[gC/m²/year] 

307.17 24.53 46.53 54.23 

Net Primary Productivity  𝑁𝑃𝑃  

[gC/m²/year] 

113.08 11.3 24.02 32.41 

Vegetation Carbon Leaf 𝐶𝑙𝑒𝑎𝑓   [gC/m²] 572.36 8.35 6.14 136.54 

Vegetation Carbon Stem 𝐶𝑠𝑡𝑒𝑚  [gC/m²] 1894.03 98.90 477.80  

Vegetation Carbon Root 𝐶𝑟𝑜𝑜𝑡   [gC/m²] 474.55 33.19 7.17  

Vegetation Nitrogen Leaf 𝑁𝑙𝑒𝑎𝑓   [gC/m²] 14.79 0.38 0.57 1.15 

Vegetation Nitrogen Stem 𝑁𝑠𝑡𝑒𝑚  [gC/m²] 30.26 2.6 12.53  

Vegetation Nitrogen Root 𝑁𝑟𝑜𝑜𝑡   [gC/m²] 9.51 0.72 0.16  

 154 

 155 

Table 2: Synthetic below-ground target values for the black spruce forest site used in the parameter calibration process 156 

Below-ground Targets 

Names 

Notation Unit Value 

Carbon Shallow 𝐶𝑠ℎ𝑎𝑙𝑙𝑜𝑤  g/m2 888.91 

Carbon Deep 𝐶𝑑𝑒𝑒𝑝  g/m2 3174.53 

Carbon Mineral Sum ∑𝐶𝑚𝑖𝑛𝑒𝑟𝑎𝑙  g/m2 19821.50 

Available Nitrogen Sum ∑𝑁𝑎𝑣𝑎𝑖𝑙   g/m2 0.76 

 157 

2.2 DVM-DOS-TEM description  158 

DVM-DOS-TEM is a process-based biosphere model designed to simulate biophysical and biogeochemical processes between 159 

the soil, vegetation, and atmosphere. DVM-DOS-TEM has been applied extensively in Arctic and Boreal ecosystems in 160 
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permafrost and non-permafrost regions (Briones et al., 2024; Euskirchen et al., 2022; Genet et al., 2013, 2018; Jafarov et al., 161 

2013; Yi et al., 2009, 2010). This model focuses on representing C and N cycles in high-latitude ecosystems and how they are 162 

affected at seasonal (i.e., monthly) to centennial scales by climate, disturbances (Genet et al., 2013, 2018; Kelly et al., 2013), 163 

biophysical processes such as soil thermal and hydrological dynamics (McGuire et al., 2018; Yi et al., 2009; Zhuang et al., 164 

2002), snow cover (Euskirchen et al., 2006), and plant canopy development (Euskirchen et al., 2014). Modeled vegetation is 165 

structured into multiple tiers: (1) the CMT represents the land cover class and characterizes vegetation composition and soil 166 

structure at the gridcell level (spatial unit, e.g. black spruce forest, tussock tundra, bog), (2) plant functional types (groups of 167 

species sharing similar ecological traits) characterize the vegetation composition within every CMT (e.g. black spruce forest 168 

community would be composed of evergreen trees, deciduous shrubs and sphagnum and feather moss plant functional types), 169 

and (3) plant structural compartments (leaves, stems, roots). The soil column is split into multiple horizons (fibric, humic, 170 

mineral, and rock/parent material). Every horizon is split into multiple layers for which C, N, temperature, and water content 171 

are simulated individually. The biophysical processes represented in DVM-DOS-TEM include radiation and water fluxes 172 

between the atmosphere, vegetation canopy, snow, and soil. Soil moisture and temperature are updated at a pseudo-daily time 173 

step (from linear interpolation of monthly climate forcings). A two-directional Stefan Algorithm is used to predict the positions 174 

of freezing/thawing fronts in the soil. The Richards equation is used to calculate soil moisture changes in the unfrozen layers 175 

of soil. Both the thermal and hydraulic properties of soil layers are affected by their water content (Yi et al., 2009, 2010; 176 

Zhuang et al., 2002). The ecological processes represented in DVM-DOS-TEM include C and N dynamics for every plant 177 

functional type of the vegetation community and every layer of the soil column. 𝐶 and 𝑁 dynamics are driven by climate, 178 

atmospheric chemistry, soil and canopy environment, and wildfire occurrence and severity. 𝐶 and 𝑁 cycles are coupled in the 179 

soil and the vegetation processes. The GPP of each plant function type is limited by 𝑁 availability. When resources in N are 180 

limited, GPP is downregulated for all plant functional types (PFTs) based on a comparison of 𝑁 demand (N required to build 181 

new tissues) and N supply in the ecosystem (Euskirchen et al., 2009). 𝐶 and 𝑁 from the litterfall are divided into aboveground 182 

and belowground. Aboveground litterfall is assigned only to the top layer of the soil column, while belowground litterfall (root 183 

mortality) is assigned to different layers of the three soil horizons based on the fractional distribution of fine roots with depth.  184 

 185 

2.3 Input data used for equilibrium run 186 

The driving inputs for the DVM-DOS-TEM model comprise spatial distribution of CMTs, landform, and mineral soil texture. 187 

These initialization data were forced to field observations at the study site (Melvin et al., 2015). The spatiotemporal dynamics 188 

of the model are driven by an annual time series of atmospheric CO2 concentration (not spatially explicit), annual time series 189 

of spatially explicit distribution of fire scars and dates, and a spatially explicit monthly time series of climate, including mean 190 

air temperature, total precipitation, net incoming shortwave radiation, and vapor pressure (Genet et al., 2018). For the present 191 

study, we use historical climate data from 1901 to 2015, sourced from the Climatic Research Unit time series version 4.0 (CRU 192 

TS4.0; Harris et al., 2014) and downscaled at a 1-km resolution using the delta method (Pastick et al., 2017). For the 193 
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equilibrium run, the model was driven using the averaged climate forcings from the 1901-1930 period for the study site 194 

location, repeated continuously for a sufficient period so equilibrium of vegetation and below-ground C fluxes and stocks was 195 

achieved. The resulting modeled ecosystem state for each site then serves as the baseline for historical simulations, however, 196 

the calibration process described here only utilized outputs from the equilibrium.  197 

2.4 MADS parameter calibration  198 

We employed the Model Analysis and Decision Support (MADS) software package for parameter calibration of DVM-DOS-199 

TEM, aiming to minimize the discrepancy between synthetic target and modeled data at the selected site (Barajas‐Solano et 200 

al., 2015; O’Malley and Vesselinov, 2015). Since its inception in 2010, MADS has undergone active development, including 201 

a transition to the Julia programming language, which supports automatic differentiation suitable for calibration 202 

problems(Vesselinov V.V., 2022).  203 

To set up the parameter calibration using the MADS package for the DVM-DOS-TEM model (Fig. 1), several components are 204 

required: the initial guess represents a set of parameter values to be passed to the DVM-DOS-TEM model; the target values; 205 

and a model function that updates the parameter file and executes the DVM-DOS-TEM model using the updated values. 206 

Parameter keys are used for parameter identification and tracking, and each parameter has a defined range, uniformly 207 

distributed within specified limits. Parameter range limits were determined based on prior knowledge. If certain observations 208 

are more critical than others, they can be weighted accordingly. For consistency of the calibration process for all parameters, 209 

we did not weight parameters in our setup (weight for all parameters were set to 1.0). The experiment name is used for 210 

bookkeeping purposes. 211 

 212 

 Md = Mads.create_problem( 

     initial_guess,       #the set of initial values 

     targets,             #the set of observations (targets) 

     DVMDOSTEM_run,       #function that runs the model 

     param_keys,          #list of parameter names  

     param_distributions, #the set of parameter ranges 

     observations_count,  #number of observations 

     observation_weights, #the set of observation weights 

     problem_name         #the name of the experiments 

) 

Mads.calibraterandom(md, 10; tolOF=0.01, tolOFcount=4) 

Figure 1. The example of the Julia code setup using Model Analysis and Decision 

Support (MADS) functions.  
 213 

In Figure 1, the calibraterandom function initiates the calibration process by randomly distributing parameter values 214 

within the specified ranges and then running the model calibration for the generated parameter sets. This function constructs 215 
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an objective function to minimize the difference between observed and modeled values (detailed in Section 2.5). The calculated 216 

residuals are used to assess method convergence. The calibration process employs a tolerance value for the objective function, 217 

denoted as tolOF, as the convergence criterion. The tolOFcount represents the number of iterations after which calibration 218 

ceases if the change in the objective function is minimal between iterations. While increasing the number of iterations could 219 

enhance calibration accuracy, it would also raise computational time. More information on the MADS functions can be found 220 

at the MADS website (https://madsjulia.github.io/Mads.jl) 221 

2.5 MADS minimization method 222 

The MADS package utilizes the Levenberg-Marquardt (LM) algorithm (Levenberg, 1944; Marquardt, 1963; Pujol, 2007) to 223 

minimize the difference (the sum of squared residuals) between observations and modeled predictions. In SI1, we provide 224 

more details on LM algorithm. The LM optimization method designed to solve non-linear least squares 225 

optimization/minimization problems, which are common in the field of history matching, model inversion, curve fitting, and 226 

parameter estimation. It combines two approaches: the first-order steepest-descent gradient method and the second-order 227 

Gauss-Newton method. This steepest-descent gradient method updates parameter values in the direction opposite to the 228 

gradient, thereby it is generally efficient in finding local minima. The Gauss-Newton method assumes that in a region close to 229 

the solution, the solved objective function behaves quadratically.  230 

The algorithm begins by selecting an initial estimate for the parameters that need to be optimized (Fig S1). This initial guess 231 

is important as it sets the starting point for the optimization process. In our experiment, the initial guess is randomly generated 232 

from within the provided range near `true` parameter values. Alternatively, users can provide the initial guess. However, 233 

exploring a set of random initial guesses provides an efficient approach to exploring the parameter space and discrimination 234 

between local and global minima. In LM, we set the damping parameter (the Marquardt lambda) to 0.01. This parameter helps 235 

in adjusting the steps taken during the optimization process, balancing between the two optimization strategies (the first- and 236 

the second order techniques discussed above). 237 

The main advantages of the LM method are its robustness and minimal computational demand. It effectively handles ill-238 

conditioned problems where other optimization methods might fail (Lin et al., 2016; Pujol, 2007). Additionally, for problems 239 

well-suited to the Gauss-Newton method, LM often converges faster than gradient descent, making it an efficient choice for 240 

many non-linear least squares problems. 241 

The disadvantage of the Levenberg-Marquardt (LM) method is its sensitivity to the initial parameter guesses. In addition, the 242 

compute speed deteriorates with the higher number of parameters used in calibration. It requires the computation of the 243 

Jacobian matrix and its pseudo-inverse, which can be computationally expensive for large-scale problems. Additionally, like 244 

many optimization methods, it can be sensitive to the initial parameter guess, potentially affecting its efficiency and 245 

convergence. In these cases, MADS provides alternative efficient approaches to address these computational challenges, such 246 

as (1) initializing the calibration with random initial guesses, (2) multiple restarts of the LM algorithms throughout the 247 
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minimization process, and (3) exploration of a series of alternative values for various parameters controlling LM performance 248 

(Lin et al., 2016).  249 

 250 

2.6 Parameters and Calibration Targets  251 

The calibration process in DVM-DOS-TEM is currently focused on the 𝐶 and 𝑁 annual cycles. Thus, calibrated parameters 252 

are associated with and adjusted to the major 𝐶 and 𝑁 fluxes and stocks in the vegetation and the soil. The calibration process 253 

follows a hierarchical approach (Figure 2), in which parameters to be calibrated are organized in hierarchical levels associated 254 

with (1) model complexity and feedback and (2) turnover of the processes the parameters are associated with. Therefore, 255 

parameters related to vegetation dynamics are calibrated first, followed by the slowest soil-related parameters.  256 

The first step of the calibration relates to the simplest, fastest, first-order process in DVM-DOS-TEM, and consists of adjusting 257 

the rate limiting parameter of maximum C assimilation of the vegetation (𝑐𝑚𝑎𝑥) driving vegetation GPP. Under baseline 258 

climate, the main limiting parameter of vegetation productivity in the Arctic is N availability (Chapin and Kedrowski, 1983) . 259 

Therefore, 𝑐𝑚𝑎𝑥  is calibrated to reproduce estimates of GPP from fertilization experiments where N limitation is lifted. When 260 

fertilization experiments are not available for the community/region of interest, it is estimated by applying a multiplicative 261 

factor to observed GPP under natural conditions. This multiplicative factor is estimated from published fertilization 262 

experiments in similar communities and computed as the ratio between GPP estimated in fertilized plots and GPP estimated 263 

in control plots. Based on the literature, this fertilization factor can vary from 1.25 to 1.5 (Ruess et al., 1996; Shaver and 264 

Chapin, 1995).  265 

The second step of the calibration process consists of turning on the representation of 𝑁 limitation on vegetation productivity 266 

in the model (Euskirchen et al., 2009) and calibrating the rest of the vegetation-related parameters. In the current workflow, it 267 

consists of three substeps. These substeps could follow a different order based on the preference of the user and the specifics 268 

of a given site.  These are rate-limiting parameters for maintenance respiration (𝐾𝑟𝑏), maximum plant N uptake (𝑛𝑚𝑎𝑥), C and 269 

N litterfall (𝑐𝑓𝑎𝑙𝑙  and 𝑛𝑓𝑎𝑙𝑙 respectively). These parameters are adjusted until DVM-DOS-TEM outputs match observations of 270 

GPP and NPP, plant N uptake (Nup), and vegetation C and N pools, respectively). Target values of these variables are listed 271 

in Table 1. It is important to note that the parameters 𝐾𝑟𝑏, 𝑐𝑓𝑎𝑙𝑙 , and 𝑛𝑓𝑎𝑙𝑙, as well as the variables for vegetation 𝐶 and 𝑁, are 272 

specified per PFT and per compartment (leaf, stem, root).  273 

In the third step, the rate-limiting parameters of soil heterotrophic respiration (𝑘𝑑𝑐) and rate of microbial 𝑁 uptake (𝑛𝑚𝑖𝑐𝑏
𝑢𝑝  ) 274 

are calibrated as soil processes and takes longer to run in comparison to first two steps. These parameters are adjusted until 275 

DVM-DOS-TEM outputs match observations of soil organic 𝐶 and available 𝑁 stocks. Target values of these variables are 276 

listed in Table 2. In a final state, vegetation-related parameters are checked for a final adjustment after soil calibration, as soil 277 

processes can feedback to vegetation dynamics. 278 
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2.8 Calibrations setup and evaluation metric  279 

Table 3 shows the parameter values used to calculate synthetic target values. We established four cases by perturbing the 280 

parameters by 10%, 20%, 50%, and 90% from their original values. For each case, the MADS calibraterandom function 281 

randomly sampled ten sets of parameters within the specified ranges (see Figure 1a). These ten sets of randomly perturbed 282 

parameters were then optimized using the MADS algorithm (Figure 1b). For each set of calibrated parameters and targets, we 283 

computed the root mean square error (RMSE) and relative error (RE) metrics. RMSE is employed to measure the magnitude 284 

of varying quantities, while RE gauges the absolute difference relative to the actual values. Given that some parameters are 285 

Figure 2. Schematics of the DVM-DOS-TEM model parameters and targets participated in the 
calibration process.  
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small (less than 10-³), the relative error provides more informative insights. The following equations were used to compute 286 

these metrics: 287 

𝑅𝑀𝑆𝐸 = √(𝑥  − 𝑥)2 ,      (1) 288 

𝑅𝐸 = |
𝑥−𝑥

𝑥
| ⋅ 100%,      (2) 289 

where 𝑥 is the mean of the best five out of ten computed target/parameter matches and 𝑥 is a synthetic target value.  290 

To ensure the selection of the best-fitting parameters, we sorted error values from the lowest to the highest. Then, we selected 291 

the top five parameter sets, calculated their mean values, and compared these averaged parameters with the synthetic target 292 

values and known parameters.  293 

 294 

Table 3: Synthetic parameter values for the black spruce forest site used in the parameter calibration process. 295 

Name Parameters Units Plant Functional Types 

Evergreen 

Tree 

Deciduous 

Shrub 

Deciduous 

Tree 

Moss 

Maximum rate of atmospheric CO2 

assimilation 
 𝑐𝑚𝑎𝑥  gC/m2/

month 

381.19 113.93 210.48 93.31 

Maximum rate of plant N uptake  𝑛𝑚𝑎𝑥 gN/m2/

month 

3.38 1.55 1.0 3.55 

rate limiting factor for C litterfall for leaf  𝑐𝑓𝑎𝑙𝑙
𝑙𝑒𝑎𝑓    month-1 0.0011 0.05 0.025 0.02 

… for stem  𝑐𝑓𝑎𝑙𝑙
𝑠𝑡𝑒𝑚  month-1 0.0034 0.0048 0.0036  

… for root 𝑐𝑓𝑎𝑙𝑙
𝑟𝑜𝑜𝑡    month-1 0.0052 0.0012 0.026  

Rate limiting factor for N litterfall for leaf  𝑛𝑓𝑎𝑙𝑙
𝑙𝑒𝑎𝑓

  month-1 0.0102 0.045 0.018 0.007 

… for stem  𝑛𝑓𝑎𝑙𝑙
𝑠𝑡𝑒𝑚

  month-1 0.001 0.001 0.005  

… for root 𝑛𝑓𝑎𝑙𝑙
𝑟𝑜𝑜𝑡

  month-1 0.003 0.007 0.008  

Rate limiting factor for maintenance 

respiration for leaf 
𝐾𝑟𝑏

𝑙𝑒𝑎𝑓
 

month-1 -6.0 -3.45 -2.95 -4.65 

… for stem  𝐾𝑟𝑏
𝑠𝑡𝑒𝑚

 month-1 -4.88 -5.15 -6.65  

… for root 𝐾𝑟𝑏
𝑟𝑜𝑜𝑡 month-1 -8.2 -6.2 -3.2  
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 296 

Table 4: Synthetic below-ground target values for the black spruce forest site used participated in the parameter calibration 297 

process 298 

Name Parameters Unit Value 

Rate of microbial N uptake 𝑛𝑚𝑖𝑐𝑏
𝑢𝑝

   𝑔𝑔−1 0.4495 

Rate limiting factor of litter decomposition  𝑘𝑑𝑐𝑟𝑎𝑤𝐶   𝑚𝑜𝑛𝑡ℎ−1 0.634 

Rate limiting factor of active pool decomposition 𝑘𝑑𝑐𝑠𝑜𝑚𝑎   𝑚𝑜𝑛𝑡ℎ−1 0.54 

Rate limiting factor of physically resistant pool 

decomposition 

𝑘𝑑𝑐𝑠𝑜𝑚𝑝𝑟   𝑚𝑜𝑛𝑡ℎ−1 0.002 

Rate limiting factor of chemically resistant pool 

decomposition 

𝑘𝑑𝑐𝑠𝑜𝑚𝑐𝑟   𝑚𝑜𝑛𝑡ℎ−1 0.00007 

 299 

3 Results  300 

3.1 Vegetation Targets  301 

Depending on the range of parameter variance, our analysis revealed varying levels of accuracy between known synthetic 302 

parameters a those determined using the MADS search approach. In general, the variance between calibrated and synthetic 303 

values grew higher with a higher degree of variance (Figure S2-S5). The averaged RMSE values for all four PFTs showed 304 

similar increases (Figure 3) with an exception for 𝐶𝑠𝑡𝑒𝑚(𝑐𝑓𝑎𝑙𝑙) deciduous shrubs, which made the RMSE score for the 10% 305 

variance higher than the 20% variance (Figure 3a and 3b). That is why we introduced the RE metric, which shows that the 306 

departure between synthetic and calibrated parameters increases with increasing perturbation and is the smallest for the 10% 307 

variance (Figure 4a).  308 

3.2 Vegetation Parameters  309 

The RMSE for parameters was highest for 𝐾𝑟𝑏
𝑟𝑜𝑜𝑡 in the evergreen tree PFT (Figure 4). Overall, 𝐾𝑟𝑏s and  𝑛𝑚𝑎𝑥 parameters 310 

exhibited the worst recovery compared to other parameters based on the RMSE metric. Conversely, REs were highest for 𝑐𝑓𝑎𝑙𝑙  311 

deciduous shrubs and less for 𝐾𝑟𝑏s. The RE indicated that smaller parameter values, such as 𝑛𝑓𝑎𝑙𝑙, deviated more significantly 312 
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from their synthetic values. Interestingly the RE score showed the same error range for 10% and 20% variance ranges, whereas 313 

RMSE showed that 10% variance has the smallest error.   314 

3.3 Soil parameters  315 

In general, the RMSE values for the sub-surface target parameters were relatively small but increased with a higher variance 316 

range (Figure 5). Notably, 𝐶𝑑𝑒𝑒𝑝 and ∑ 𝐶𝑚𝑖𝑛𝑒𝑟𝑎𝑙 exhibited high RMSE values of 3.34 and 9.12, respectively, for the 10% 317 

variance range (Figure 5a). Despite this, the soil parameters for 10% variance showed the best match, with RMSE values less 318 

than 0.01. The RE for targets revealed increasing deviations from the synthetic parameter values for ∑ 𝑁𝑎𝑣𝑎𝑖𝑙 . The RE for 319 

parameters indicated that 𝑛𝑚𝑖𝑐𝑏
𝑢𝑝

, 𝑘𝑑𝑐𝑟𝑎𝑤𝐶   and 𝑘𝑑𝑐𝑠𝑜𝑚𝑎  had higher deviations from their respective synthetic values for the 320 

50% and 90% variance range, respectively. 321 
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 322 

 323 

Figure. 3. a), b), c), and d) are root mean square error (RMSE) metric and e), f), g), and h) are relative error (RE) metric for 10%, 
20%, 50%, and 90% variance in the parameter range, correspondingly. Targets shown on y-axis, and plant functional types are on 
x-axis. The colorbar represents the RMSE and RE scores.   

a) b) d) 
RMSE 

e) f) h) g) 

RE 

c) 
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      324 

Figure 4. a), b), c), and d) are root mean square error (RMSE) metric and e), f), g), and h) are relative error (RE) 

metric for 10%, 20%, 50%, and 90% variance in the parameter range, correspondingly. DVM-DOS-TEM parameters 
shown on y-axis, and plant functional types are on x-axis. The colorbar represents the RMSE and RE scores   

a) b) d) 
RMSE 

e) f) h) 

RE 

c) 

g) 
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 325 

4 Discussion 326 

4.1 Importance of the initial guess 327 

The importance of initial values, or the so-called initial guess, did not significantly impact our synthetic experiment because 328 

the perturbed parameter values were close enough to the true state. However, for non-synthetic calibrations, the initial state is 329 

crucial (Euskirchen et al., 2022; Yi et al., 2009). Applying calibration with parameter values far from the true values could 330 

Figure 5. Comparison between calibrated and synthetic sub-
surface target values (a) root mean square error (RMSE) and (b) 
relative error (RE) scores. Comparison between calibrated and 
synthetic sub-surface parameter values (a) root mean square 
error (RMSE) and (b) relative error (RE) scores for all range 
variances. The colorbar represents the RMSE and RE score.   

a) b) 

c) d) 
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lead to non-convergence of the method and increased computation time. Therefore, when using real observations, starting with 331 

a good initial guess is essential. We developed parameter sensitivity methods to provide better estimates for the initial guess 332 

(Briones et al., 2024). The current experiment proves that MADS can accurately recover true parameter states well enough 333 

when the initial guess is well set. 334 

 335 

4.2 Analysis of the recovery metrics 336 

The mean parameter values calculated from the five best-matched MADS value predictions align closely with the synthetic 337 

parameter values, demonstrating the method's efficacy. The calculated REs for parameters indicate that the relative distance 338 

between the calibrated and the synthetic values increases with a higher parameter variance range, except RE for soil targets 339 

(Figure 5b). In many cases the RMSE for calibrated target values showed a higher distance for 10% variance range than for 340 

20% variance range (Figure 3a and 3b). In addition, the RMSEs for 10% variance range for the soil targets were higher than 341 

any other variance range (Figure 5a). The mixed results between 10% and 20% variance range as well as soil target high RMSE 342 

for 10% variance, could be attributed to the limited number of cases participated in each variance case. The total number of 343 

randomly perturbed initial guesses within the given variance range was 10. It is possible that increasing the total number of 344 

searches would yield a more consistent pattern of decreasing accuracy with increasing variance. 345 

 346 

4.3 Parameter-target relationship and small parameter values 347 

The method demonstrated robust recovery of 𝑐𝑚𝑎𝑥  values, indicating that it performs best when there is a linear relationship 348 

between parameters and target values (Eq. S1). For parameters, which do not exhibit a linear relationship with their target 349 

values (e.g. 𝐾𝑟𝑏, Eq. S4), the calibrated parameters showed wider variance. Additionally, small parameter values, such as 350 

𝑛𝑓𝑎𝑙𝑙, corresponded to small range values, leading to insensitivity between 𝑛𝑓𝑎𝑙𝑙 and vegetation 𝑁. To address this, we applied 351 

a logarithmic transformation to these and to some other small values for soil C rates. 352 

 353 

4.4 The impact of 𝑛𝑚𝑎𝑥  on N uptake and NPP 354 

Sensitivity between model parameters and targets is crucial for effective parameter calibration. We observed that the sensitivity 355 

between 𝑛𝑚𝑎𝑥  and 𝑁𝑃𝑃 was not strong (Eq. S2, Eq. S5), which led us to combine its calibration with the 𝐾𝑟𝑏 parameter. Based 356 

on (Eq. S2), 𝑛𝑚𝑎𝑥  directly influences 𝑁𝑢𝑝𝑡𝑎𝑘𝑒. An increase in 𝑛𝑚𝑎𝑥  enhances 𝑁𝑢𝑝𝑡𝑎𝑘𝑒 , thereby increasing the total 𝑁 supply. 357 

Since 𝑁𝑃𝑃 is proportional to 𝑁𝑠𝑢𝑝𝑝𝑙𝑦 and inversely proportional to 𝑁𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑, a higher 𝑁 supply can lead to a higher 𝑁𝑃𝑃, 358 

provided that other factors remain constant. Therefore, despite the initial observation of weak sensitivity, 𝑛𝑚𝑎𝑥  could have a 359 

considerable impact on 𝑁𝑃𝑃 due to its role in 𝑁𝑢𝑝𝑡𝑎𝑘𝑒  and the overall 𝑁𝑠𝑢𝑝𝑝𝑙𝑦. However, our target values for plant 𝑁 uptake 360 

are poorly constrained due to a lack of sufficient observations. This underestimation of plant 𝑁 uptake could account for the 361 

observed lack of sensitivity of NPP to 𝑛𝑚𝑎𝑥 . This issue requires further investigation and currently underscores the importance 362 

of accurately calibrating 𝑛𝑚𝑎𝑥  to ensure better simulation of ecosystem productivity. 363 
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 364 

4.5 The Calibration Workflow 365 

The setup of the calibration workflow is important for achieving accurate parameter estimation in terrestrial ecosystem models, 366 

considering the model organization by hierarchical levels associated with feedback and turnover of the ecological processes 367 

represented. Our findings indicate that calibrating one or two parameter sets at a time, while keeping other parameters constant, 368 

is more effective than calibrating all parameters simultaneously. For example in the current workflow, we combined 𝑛𝑚𝑎𝑥  and 369 

𝐾𝑟𝑏 (Figure 2 Step a), which was based on the low sensitivity of 𝑛𝑚𝑎𝑥  to 𝑁𝑃𝑃. Combining multiple variables in one calibration 370 

step increases the compute time and could result in low match accuracy. On the other hand, sequential parameter calibration 371 

carries the risk of losing accuracy for parameters calibrated in previous steps. To mitigate this risk, we include targets from 372 

previous calibration steps in the current calibration step. For example, when optimizing for 𝑛𝑓𝑎𝑙𝑙, we include targets for 𝑁𝑃𝑃, 373 

vegetation 𝐶, and vegetation 𝑁. 374 

 375 

Calibrating one parameter at a time is advantageous not only computationally but also in preventing the occurrence of an 376 

underdetermined problem, which arise when the number of parameters exceeds the number of targets. Undetermined problems 377 

exhibit a lower rate of convergence due to the correlation between parameters and the sensitivity of multiple parameters to one 378 

or a few similar target values. The study by Jafarov et al., (2020) showed that overdetermined problems, i.e. higher and diverse 379 

number of target values, are more effective in recovering accurate parameter values. 380 

 381 

4.6 Sensitivity of the 𝐾𝑟𝑏 parameter to NPP and vegetation C 382 

The 𝐾𝑟𝑏 parameter exhibited higher sensitivity to both 𝑁𝑃𝑃 and vegetation 𝐶 compared to other parameters. Despite the 383 

overall good model fitness, the deviation from the synthetic values for 𝐾𝑟𝑏 was higher. This was primarily due to 𝐾𝑟𝑏
𝑟𝑜𝑜𝑡 384 

parameter for evergreen tree (Figure S2) persistently showed higher discrepancy. Its sensitivity can be explained by examining 385 

its role in the equations governing maintenance respiration (𝑅𝑚 Eq. S3). The relationship between biomass and maintenance 386 

respiration is non-linear; 𝑅𝑚  increases as biomass increases, where 𝐾𝑟𝑏 controls the intercept of this relationship (Tian et al., 387 

1999). Since 𝑁𝑃𝑃 is computed as a resultant of 𝐺𝑃𝑃 and autotrophic respiration, including 𝑅𝑚, any alteration in 𝐾𝑟𝑏 impacts 388 

𝑁𝑃𝑃 directly (Eq. S9). This sensitivity underscores the importance of accurately calibrating 𝐾𝑟𝑏 to ensure the correct 389 

simulation of ecosystem productivity and C dynamics in the DVM-DOS-TEM. 390 

 391 

4.7 Vegetation and Below-Ground C stocks equilibrium time 392 

Since vegetation C and N is characterized by faster turnover than soil carbon dynamic, vegetation C and N stocks and fluxes 393 

equilibrate faster than soil C and N stocks and fluxes, we used a two-phase equilibration approach: 200 years for the vegetation 394 

and 2000 years for the soil. However, the C stocks achieved after 200 years of equilibration for vegetation might shift when 395 

the model is run for an additional 1800 years to equilibrate soil. To mitigate this issue, we developed equilibrium checks to 396 
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ensure that the vegetation stocks remain stable and close to their equilibrium values throughout the extended simulation period 397 

required for soil stocks equilibration. These equilibrium checks help identify significant departures from the initial equilibrium 398 

values of vegetation C while allowing the model to run for a longer duration to achieve below-ground C equilibrium. This 399 

approach ensures the accuracy and stability of both vegetation and below-ground C stocks in long-term model simulations. 400 

5. Conclusion 401 

In this study, we showed that the developed MADS parameter calibration method for the DVM-DOS-TEM can effectively 402 

recover the synthetic parameter set, optimizing labor and time, and enhancing reproducibility of the calibration process. By 403 

implementing a structured workflow that calibrates one or two parameters at a time and including equilibrium checks the 404 

method ensured accurate parameter estimation even for high variance parameter range. The primary advantage of the semi-405 

automated MADS calibration approach is its significant enhancement of repeatability and clear quantification of calibration 406 

performance. In contrast, manual calibration processes are often difficult to reproduce as it is impractical if not impossible, to 407 

record users continuous adjustments to parameters values until improved results were achieved. Additionally, appreciation of 408 

model improvement by the user is often subjective as running a statistical evaluation at each parameter adjustment would be 409 

too time consuming. In the approach demonstrated in this study, we introduced a calibration metric that provides a quantifiable 410 

measure of the overall quality of the calibration. This metric enhances reproducibility by allowing future users working on the 411 

same site to follow the established workflow and reliably reproduce the calibrated parameter and target values. The RMSE 412 

quantifies the average differences between calibrated and observed (synthetic) values, while the RE metric indicates deviations 413 

from the synthetic values.  414 

 415 

In all calibration experiments, we utilized only ten randomly perturbed initial parameter sets within a specified variance range. 416 

Our results indicated that perturbation ranges of 10%-20% were equally effective in achieving optimal target/parameter 417 

calibration. However, increasing the number of random perturbations could potentially shift the statistics, favoring a 10% 418 

variance range. Based on our findings, we recommend maintaining a small parameter variance interval, as this approach is 419 

likely to provide a robust match with target values and ensure effective parameter calibration. 420 

 421 

While the choice of the initial guess is crucial, its impact was mitigated in our study due to the design involving variance 422 

around synthetic parameter values. The developed method significantly reduces the labor and time required for calibrating 423 

DVM-DOS-TEM model parameters. However, it does not entirely replace the need for human intervention. Users still need 424 

to understand the specifics of the model and the relationship between parameters and targets, as well as conduct post-processing 425 

assessments of the fit. In future work, we will apply this method to data processed at multiple study sites to validate further 426 

and refine the calibration approach. 427 

 428 
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6. Data and model availability  429 
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